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Linear Convergence of Randomized Kaczmarz Method for Solving
Complex-Valued Phaseless Equations\ast 
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Abstract. A randomized Kaczmarz method was recently proposed for phase retrieval, which has been shown
numerically to exhibit empirical performance over other state-of-the-art phase retrieval algorithms
both in terms of the sampling complexity and computation time. While the rate of convergence has
been well studied in the real case where the signals and measurement vectors are all real-valued,
there is no guarantee for the convergence in the complex case. In fact, the linear convergence of the
randomized Kaczmarz method for phase retrieval in the complex setting is left as a conjecture by Tan
and Vershynin [Inf. Inference, 8 (2019), pp. 97--123]. In this paper, we provide the first theoretical
guarantees for it. We show that for random measurements \bfita j \in \BbbC n, j = 1, . . . ,m, which are drawn
independently and uniformly from the complex unit sphere, or equivalently are independent complex
Gaussian random vectors, when m \geq Cn for some universal positive constant C, the randomized
Kaczmarz scheme with a good initialization converges linearly to the target solution (up to a global
phase) in expectation with high probability. This gives a positive answer to that conjecture.
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1. Introduction.

1.1. Problem setup. Let \bfitx \in \BbbC n (or \BbbR n) be an arbitrary unknown vector. We consider
the problem of recovering \bfitx from the phaseless equations:

(1.1) bj = | \langle \bfita j ,\bfitx \rangle | , j = 1, . . . ,m,

where \bfita j \in \BbbC n (or \BbbR n) are known sampling vectors and bj \in \BbbR are observed measurements.
This problem, called phase retrieval, has been a topic of study since the 1980's due to its wide
range of practical applications in fields of physical sciences and engineering, such as X-ray
crystallography [18, 27], diffraction imaging [31, 9], microscopy [26], astronomy [12], optics
and acoustics [38, 1, 2], etc., where the detector can record only the diffracted intensity while
losing the phase information. Despite its simple mathematical form, it has been shown that
to reconstruct a finite-dimensional discrete signal from its Fourier transform magnitudes is
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990 MENG HUANG AND YANG WANG

generally NP-complete [30]. Another special case of solving these phaseless equations is the
well-known stone problem in combinatorial optimization, which is also NP-complete [3].

To solve (1.1), we employ the randomized Kaczmarz method where the update rule is
given by

(1.2) \bfitz k+1 = \bfitz k  - 

\Biggl( 
1 - bik

| \bfita \ast 
ik
\bfitz k| 

\Biggr) 
\bfita \ast 
ik
\bfitz k

\| \bfita ik\| 22
\bfita ik ,

where ik is chosen randomly from the \{ 1, . . . ,m\} with probability proportional to \| \bfita ik\| 22
at the (k + 1)th iteration. Actually, the update rule above is a natural adaption of the
classical randomized Kaczmarz method [22] for solving linear equations. The idea behind
the scheme is simple. When the iteration is close enough to the signal vector \bfitx , the phase
information can be approximated by that of the current estimate. Thus, in each iteration, we
first select a measurement vector \bfita ik randomly and then project the current estimate \bfitz k onto
the hyperplane \Biggl\{ 

\bfitz \in \BbbC n : \langle \bfita ik , \bfitz \rangle = bik \cdot 
\bfita \ast 
ik
\bfitz k

| \bfita \ast 
ik
\bfitz k| 

\Biggr\} 
.

That gives the scheme (1.2).
We are interested in the following questions:
Does the randomized Kaczmarz scheme (1.2) converge to the target solution \bfitx (up to a

global phase) in the complex setting? Can we establish the rate of convergence?

1.2. Motivation. The randomized Kaczmarz method for solving the phase retrieval prob-
lem was proposed by Wei [41] in 2015. It has been demonstrated in [41] using numerical ex-
periments that the randomized Kaczmarz method exhibits empirical performance over other
state-of-the-art phase retrieval algorithms both in terms of the sampling complexity and com-
putation time when the measurements are real or complex Gaussian random vectors or when
they follow the coded diffraction pattern (CDP) model. However, no adequate theoretical
guarantee for the convergence was established in [41]. To bridge the gap, for the real Gauss-
ian measurement vectors, Li, Gu, and Lu [24] established an asymptotic convergence of the
randomized Kaczmarz method for phase retrieval, but it requires an infinite number of sam-
ples, which is unrealistic in practicality. Recently, Tan and Vershynin [34] used the chain
argument coupled with bounds on Vapnik--Chervonenkis (VC) dimension and metric entropy
and then proved theoretically that the randomized Kaczmarz method for phase retrieval is
linearly convergent with O(n) Gaussian random measurements, where n is the dimension of
the signal. A result almost the same as that of [34] was also obtained independently by Jeong
and G\"unt\"urk [21] using the tools of hyperplane tessellation and ``drift analysis."" Another
similar conditional error contractivity result was also established by Zhang et al. [42], which
is called incremental reshaped Wirtinger flow.

We shall emphasize that all results concerning the convergence of the randomized Kacz-
marz method for phase retrieval are for the real case where the signals and measurement
vectors are all real-valued. Since the phase can only be +1 or  - 1 in the real case, the mea-
surement vectors can be divided into ``good measurements"" with a correct phase and ``bad
measurements"" with an incorrect phase. When the initial point is close enough to the true
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LINEAR CONVERGENCE OF RANDOMIZED KACZMARZ METHOD 991

solution, the total influence of ``bad measurements"" can be well controlled. However, this is
not true for the complex measurements because \bfitx ei\theta is continuous with respect to \theta \in [0, 2\pi ).
For this reason, the proofs for the real case cannot be generalized to the complex setting easily.
As stated in [34, section 7.2], the linear convergence of the randomized Kaczmarz method for
phase retrieval in the complex setting is left as a conjecture. We shall point out that the
convergence of the randomized Kaczmarz method for phase retrieval in a complex setting is
of more practical interest.

In this paper, we aim to prove this conjecture by introducing a deterministic condition on
measurement vectors called ``restricted strong convexity"" and then showing that the random
measurements drawn independently and uniformly from the complex-valued sphere, or equiv-
alently for the complex Gaussian random vectors, satisfy this condition with high probability,
as long as the measurement number m \geq O(n).

1.3. Related work.

1.3.1. Phase retrieval. The phase retrieval problem, which aims to recover \bfitx from phase-
less equations (1.1), has received intensive investigations recently. Note that if \bfitz is a solution
to (1.1), then \bfitz ei\theta is also the solution of this problem for any \theta \in \BbbR . Therefore, the recovery
of the solution \bfitx is up to a global phase. It has been shown theoretically that m \geq 4n  - 4
generic measurements suffice to recover \bfitx for the complex case [11, 40] and m \geq 2n  - 1 are
sufficient for the real case [2].

Many algorithms with provable performance guarantees have been designed to solve the
phase retrieval problem. One line of research relies on a ``matrix-lifting"" technique, which lifts
the phase retrieval problem into a low rank matrix recovery problem, and then a nuclear norm
minimization is adopted as a convex surrogate of the rank constraint. Such methods include
PhaseLift [8, 6], PhaseCut [37], etc. While these convex methods have a substantial advance
in theory, they tend to be computationally inefficient for large scale problems. Another line
of research seeks to optimize a nonconvex loss function in the natural parameter space, which
achieves significantly improved computational performance. The first nonconvex algorithm
with theoretical guarantees was given by Netrapalli, Jain, and Sanghavi, who proved that the
AltMinPhase [29] algorithm, based on a technique known as spectral initialization, converges
linearly to the true solution up to a global phase with O(n log3 n) resampling Gaussian ran-
dom measurements. This work led to further several other nonconvex algorithms based on
spectral initialization [4, 7, 10, 36, 19]. Specifically, Cand\`es, Li, and Soltanolkotabi developed
the Wirtinger flow (WF) [7] method and proved that the WF algorithm can achieve linear
convergence with O(n log n) Gaussian random measurements. Recently, Chen and Cand\`es
improved the result to O(n) Gaussian random measurements by incorporating a truncation,
namely the truncated Wirtinger flow (TWF) [10] algorithm. Other nonconvex methods with
provable guarantees include the Gauss--Newton [17], the trust-region [33], smoothed ampli-
tude flow [5], the truncated amplitude flow (TAF) [39] algorithm, the reshaped Wirtinger flow
(RWF) [42] algorithm, and the perturbed amplitude flow (PAF) [16] algorithm, to name just
a few. We refer the reader to survey papers [20, 31] for accounts of recent developments in
the theory, algorithms, and applications of phase retrieval.

1.3.2. Randomized Kaczmarz method for linear equations. The Kaczmarz method is
one of the most popular algorithms for solving overdetermined systems of linear equations [22],
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992 MENG HUANG AND YANG WANG

which iteratively project the current estimate onto the hyperplane of one chosen equation at
a time. Suppose the system of linear equations we want to solve is given by A\bfitx = \bfity , where
A \in \BbbC m\times n. In each iteration of the Kaczmarz method, one row \bfita ik of A is selected and then
the new iterate \bfitz k+1 is obtained by projecting the current estimate \bfitz k orthogonally onto the
solution hyperplane of \langle \bfita ik , \bfitz \rangle = yik as follows:

(1.3) \bfitz k+1 = \bfitz k +
yik  - \langle \bfita ik , \bfitz k\rangle 

\| \bfita ik\| 22
\bfita ik .

The classical version of the Kaczmarz method sweeps through the rows of A in a cyclic manner;
however, it lacks useful theoretical guarantees. Existing results in this manner are based on
quantities of matrixA which are hard to compute [13, 14, 15]. In 2009, Strohmer and Vershynin
[32] proposed a randomized Kaczmarz method where the row of A is selected in random order
and they proved that this randomized Kaczmarz method is convergent with the expected
exponential rate. More precisely, at each step k, if the index ik is chosen randomly from the
\{ 1, . . . ,m\} with probability proportional to \| \bfita ik\| 22, then for any initial \bfitz 0 the iteration \bfitz k
given by randomized Kaczmarz scheme (1.3) obeys

\BbbE \| \bfitz k  - \bfitx \| 2 \leq 
\biggl( 
1 - 1

k(A) \cdot n

\biggr) k/2

\cdot \| \bfitz 0  - \bfitx \| 2,

where k(A) is the condition number of A.

1.3.3. Randomized Kaczmarz method for phase retrieval. As stated before, the ran-
domized Kaczmarz method for phase retrieval was proposed by Wei in 2015. He was able
to show numerically [41] that the randomized Kaczmarz method exhibits empirical perfor-
mance over other state-of-the-art phase retrieval algorithms but lacks adequate theoretical
performance guarantees. Recently, in the real case, when the measurements \bfita j are drawn
independently and uniformly from the unit sphere, several results have been established in-
dependently to guarantee the linear convergence of the randomized Kaczmarz method under
appropriate initialization.

For instance, Tan and Vershynin [34] prove that for any 0 < \delta , \delta 0 \leq 1, if m \gtrsim n log(m/n)+
log(1/\delta 0) and \bfita j \in \BbbR n are drawn independently and uniformly from the unit sphere, then with
probability at least 1 - \delta 0 it holds that the kth step randomized Kaczmarz estimate \bfitz k given
by (1.2) satisfies

\BbbE \scrI k [dist(\bfitz k,\bfitx )1\tau =\infty ] \leq 
\biggl( 
1 - 1

2n

\biggr) k/2

dist(\bfitz 0,\bfitx ),

provided dist(\bfitz 0,\bfitx ) \leq c\delta \| \bfitx \| 2 for some constant c > 0. Furthermore, the probability
\BbbP (\tau < \infty ) \leq \delta 2. Here \tau is the stopping time and \BbbE \scrI k denotes the expectation with respect
to randomness \scrI k := \{ i0, i1, . . . , ik - 1\} conditioned on the high probability event of random
measurements \{ \bfita j\} mj=1.

1.4. Our contributions. As stated before, the randomized Kaczmarz method is a popular
and convenient method for solving the phase retrieval problem due to its fast convergence and
low computational complexity. For the real setting, the theoretical guarantee of linear con-
vergence has been established; however, there is no result concerning the rate of convergence
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LINEAR CONVERGENCE OF RANDOMIZED KACZMARZ METHOD 993

in the complex setting. Since there is an essential difference between the real setting and
complex setting, the convergence of the randomized Kaczmarz method in the complex setting
has been left as a conjecture [34, section 7.2]. The goal of this paper is to give a positive
answer to this conjecture, as shown below.

Theorem 1.1. Assume that the measurement vectors \bfita 1, . . . ,\bfita m \in \BbbC n are drawn indepen-
dently and uniformly from the unit sphere \BbbS n - 1

\BbbC . For any 0 < \delta < 1, let \bfitz 0 be an initial
estimate to \bfitx such that dist(\bfitz 0,\bfitx ) \leq 0.01\delta \| \bfitx \| 2. There exist universal constants C0, c0 > 0
such that if m \geq C0n, then with probability at least 1 - 14 exp( - c0n) it holds that the iteration
\bfitz k given by randomized Kaczmarz update rule (1.2) obeys

\BbbE \scrI k [dist(\bfitz k,\bfitx )1\tau =\infty ] \leq (1 - 0.03/n)k/2dist(\bfitz 0,\bfitx ),

where \tau is the stopping time defined by

\tau := min \{ k : \bfitz k /\in B\} with B := \{ \bfitz : dist(\bfitz ,\bfitx ) \leq 0.01\| \bfitx \| 2\} .

Furthermore, the probability \BbbP (\tau < \infty ) \leq \delta 2. Here \BbbE \scrI k denotes the expectation with respect
to randomness \scrI k := \{ i0, i1, . . . , ik - 1\} conditioned on the high probability event of random
measurements \{ \bfita j\} mj=1.

The theorem asserts that the randomized Kaczmarz method converges linearly to the
global solution \bfitx (up to a global phase) in expectation for random measurements \bfita j \in \BbbC n

which are drawn independently and uniformly from the complex unit sphere, or equivalently
are independent complex Gaussian random vectors, with an optimal sample complexity. The
proof of this theorem is much more direct than the Tan--Vershynin analysis of the randomized
Kaczmarz algorithm for real Gaussian measurements [34]. Specifically, our analysis is based
on the restricted strong convexity property of the loss function (2.5), while the Tan--Vershynin
analysis is based on a chain argument coupled with bounds on Vapnik--Chervonenkis (VC)
dimension and metric entropy.

Remark 1.2. In Theorem 1.1, there are two sources of randomness: one is from the mea-
surements \bfita j , and the other is from the selection of the equation at each iteration of the algo-
rithm. For this reason, an important distinction between the randomized Kaczmarz method
and other algorithms such as WF [7], TWF [10], and TAF [39] is that it is conditional on
the event \bfitz k \in B for all k \geq 1. From Theorem 1.1, this event holds with probability at least
1 - \delta 2.

Remark 1.3. Theorem 1.1 requires an initial estimate \bfitz 0 which is close to the target so-
lution. In fact, a good initial estimate can be obtained easily by spectral initialization, which
is widely used in nonconvex algorithms for phase retrieval. For instance, when \bfita j \in \BbbC n

are complex Gaussian random vectors, Gao and Xu [17] develop a spectral method based
on exponential function and prove that with probability at least 1  - exp( - cn) the spectral
initialization can give an initial guess \bfitz 0 satisfying dist(\bfitz 0,\bfitx ) \leq \epsilon \| \bfitx \| 2 for any fixed \epsilon , pro-
vided m \geq Cn for a positive constant C. We refer the reader to [10, 39, 42] for the spectral
initialization of others and [25, 28] for the optimal design of a spectral initialization.
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994 MENG HUANG AND YANG WANG

1.5. Notations. Throughout this paper, we assume the measurements \bfita j \in \BbbC n, j =
1, . . . ,m, are drawn independently and uniformly from the complex unit sphere. We say
\xi \in \BbbC n is a complex Gaussian random vector if \xi \sim 1/

\surd 
2 \cdot \scrN (0, In) + i/

\surd 
2 \cdot \scrN (0, In). We

write \bfitz \in \BbbS n - 1
\BbbC if \bfitz \in \BbbC n and \| \bfitz \| 2 = 1. Let \Re (z) \in \BbbR and \Im (z) \in \BbbR denote the real and

imaginary parts of a complex number z \in \BbbC . For any A,B \in \BbbR , we use A \lesssim B to denote
A \leq C0B, where C0 \in \BbbR + is an absolute constant. The notion \gtrsim can be defined similarly.
In this paper, we use C, c and the subscript (superscript) form of them to denote universal
constants whose values vary with the context.

1.6. Organization. The paper is organized as follows. In section 2, we introduce some
notations and definitions that will be used in our paper. In particular, the restricted strong
convexity condition plays a key role in the proof of the main result. In section 3, we first
show that under the restricted strong convexity condition a convergence result for a single
step can be established, and then we show that the main result can be proved by using the
tools from stochastic processes. In section 4, we demonstrate that the random measurements
drawn independently and uniformly from the complex unit sphere satisfy the restricted strong
convexity condition with high probability. In section 5, we carry out some numerical experi-
ments to demonstrate the efficiency and robustness of the randomized Kaczmarz method. A
brief discussion is presented in section 6. Section 7 collects the technical lemmas needed in
the proofs.

2. Preliminaries. The aim of this section is to introduce some definitions that will be
used in our paper. Let \bfitx \in \BbbC n be the target signal we want to recover. The measurements
we obtain are

(2.1) bj = | \langle \bfita j ,\bfitx \rangle | , j = 1, . . . ,m,

where \bfita j \in \BbbC n are measurement vectors. In this paper, we assume without loss of generality
that \bfita j \in \BbbS n - 1

\BbbC for all j = 1, . . . ,m. For the recovery of \bfitx , we consider the randomized
Kaczmarz method given by

(2.2) \bfitz k+1 = \bfitz k  - 

\Biggl( 
1 - bik

| \bfita \ast 
ik
\bfitz k| 

\Biggr) 
\bfita ik\bfita 

\ast 
ik
\bfitz k,

where ik is chosen uniformly from the \{ 1, . . . ,m\} at random at the (k + 1)th iteration.
Obviously, for any \bfitz , if \bfitz is a solution to (2.1), then \bfitz ei\phi is also a solution to it for

any \phi \in \BbbR . Thus, for m \geq O(n) generic measurements \bfita j , the set of solutions to (2.1) is\bigl\{ 
\bfitx ei\phi : \phi \in \BbbR 

\bigr\} 
, which is a one-dimensional circle in \BbbC n [11, 40] . For this reason, we define

the distance between \bfitz and \bfitx as

dist(\bfitz ,\bfitx ) = min
\phi \in \BbbR 

\| \bfitz  - \bfitx ei\phi \| 2.

For convenience, we also define the phase \phi (\bfitz ) as

(2.3) \phi (\bfitz ) := argmin
\phi \in \BbbR 

\| \bfitz  - \bfitx ei\phi \| 2
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for any \bfitz \in \BbbC n. Moreover, for any \epsilon \geq 0 we define the \epsilon -neighborhood of \bfitx as

(2.4) E(\epsilon ) := \{ \bfitz \in \BbbC n : dist(\bfitz ,\bfitx ) \leq \epsilon \| \bfitx \| 2\} .

The following auxiliary loss function plays a key role in the proof of the main result:

(2.5) f(\bfitz ) =
1

m

m\sum 
j=1

\bigl( \bigm| \bigm| \bfita \ast 
j\bfitz 
\bigm| \bigm|  - \bigm| \bigm| \bfita \ast 

j\bfitx 
\bigm| \bigm| \bigr) 2 .

Since it is not differentiable, we shall need the directional derivative. For any vector \bfitv \not = 0 in
\BbbC n, the one-sided directional derivative of f at \bfitz along the direction \bfitv is given by

D\bfitv f(\bfitz ) := lim
t\rightarrow 0+

f(\bfitz + t\bfitv ) - f(\bfitz )

t

if the limit exists. It is not difficult to compute that the one-sided directional derivative of f
in (2.5) along any direction \bfitv is

(2.6) D\bfitv f(\bfitz ) =
2

m

m\sum 
j=1

\Biggl( 
1 - 

| \bfita \ast 
j\bfitx | 

| \bfita \ast 
j\bfitz | 

\Biggr) 
\Re (\bfita \ast 

j\bfitv \bfitz 
\ast \bfita j).

Finally, we need the assumption that f satisfies a local restricted strong convexity on E(\epsilon ),
which essentially states that the function is well behaved along the line connecting the current
point to its nearest global solution. Here E(\epsilon ) and f are defined in (2.4) and (2.5), respectively.

Definition 2.1 (restricted strong convexity). The function f is said to obey the restricted
strong convexity RSC(\gamma , \epsilon ) for some \gamma , \epsilon > 0 if

D\bfitz  - \bfitx ei\phi (\bfitz )f(\bfitz ) \geq \gamma \| \bfitz  - \bfitx ei\phi (\bfitz )\| 22 + f(\bfitz )

for all \bfitz \in E(\epsilon ).

3. Proof of the main result. In this section, we present the detailed proof of the main
result. We first prove that under the assumption of f satisfying restricted strong convexity a
bound for the expected decrement in distance to the solution set can be established for the
randomized Kaczmarz scheme in a single step. Next, we show that for random measurements
\bfita j \in \BbbC n, j = 1, . . . ,m, which are drawn independently and uniformly from the complex
unit sphere the function f defined in (2.5) satisfies the restricted strong convexity with high
probability, providedm \geq Cn for some constant C > 0. Finally, using the tools from stochastic
processes, we could prove that the randomized Kaczmarz method is linearly convergent in
expectation, which concludes the proof of the main result.

Theorem 3.1. Assume f defined in (2.5) satisfies the restricted strong convexity RSC(\gamma , \epsilon ).
Then the iteration \bfitz k+1 given by randomized Kaczmarz update rule (2.2) obeys

\BbbE ik

\bigl[ 
dist2(\bfitz k+1,\bfitx )

\bigr] 
\leq (1 - \gamma )dist2(\bfitz k,\bfitx )

for all \bfitz k satisfying dist(\bfitz k,\bfitx ) \leq \epsilon \| \bfitx \| 2. Here \BbbE ik denotes the expectation with respect to
randomness of ik at iteration \bfitz k.
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Proof. Recognize that \| \bfita ik\| 2 = 1. Using restricted strong convexity condition RSC(\gamma , \epsilon ),
we have

\BbbE ikdist
2(\bfitz k+1,\bfitx ) = \BbbE ik\| \bfitz k+1  - \bfitx ei\phi (\bfitz k+1)\| 22

\leq \BbbE ik

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bfitz k  - \bfitx ei\phi (\bfitz k)  - 
\biggl( 
1 - bik

| \bfita \ast 
ik
\bfitz k| 

\biggr) 
\bfita \ast 
ik
\bfitz k\bfita ik

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

= \| \bfitz k  - \bfitx ei\phi (\bfitz k)\| 22 + \BbbE ik

\biggl( 
1 - bik

| \bfita \ast 
ik
\bfitz k| 

\biggr) 2 \bigm| \bigm| \bfita \ast 
ik
\bfitz k
\bigm| \bigm| 2

 - 2\BbbE ik\Re 

\Biggl( \biggl( 
1 - bik

| \bfita \ast 
ik
\bfitz k| 

\biggr) 
\bfitz \ast 
k\bfita ik\bfita 

\ast 
ik
(\bfitz k  - \bfitx ei\phi (\bfitz k))

\Biggr) 
= \| \bfitz k  - \bfitx ei\phi (\bfitz k)\| 22 + f(\bfitz k) - D\bfitz k - \bfitx ei\phi (\bfitz k)f(\bfitz k)

\leq (1 - \gamma )\| \bfitz k  - \bfitx ei\phi (\bfitz k)\| 22,

where the third equation follows from the expression of the directional derivative as shown in
(2.6). This completes the proof.

Theorem 3.2. Assume the measurement vectors \bfita 1, . . . ,\bfita m \in \BbbC n are drawn uniformly from
the unit sphere \BbbS n - 1

\BbbC . Suppose that m \geq C0n and f is defined in (2.5). Then f satisfies the
restricted strong convexity RSC(0.03n , 0.01) with probability at least 1  - 14 exp( - c0n), where
C0, c0 are universal positive constants.

Proof. The proof of this theorem is deferred to section 4.

Based on Theorems 3.1 and 3.2, we obtain that if m \geq C0n for some universal constant
C0 > 0, then with probability at least 1 - 14 exp( - c0n) the (k + 1)th iteration obeys

\BbbE ik

\bigl[ 
dist2(\bfitz k+1,\bfitx )

\bigr] 
\leq (1 - 0.03/n) dist2(\bfitz k,\bfitx ),

provided dist(\bfitz k,\bfitx ) \leq 0.01\| \bfitx \| 2 at k step. To be able to iterate this result recursively, we need
that the condition dist(\bfitz k,\bfitx ) \leq 0.01\| \bfitx \| 2 holds for all k; however, it does not hold arbitrarily.
Hence, we introduce a stopping time

(3.1) \tau := min \{ k : \bfitz k /\in B\} ,

where B := \{ \bfitz : dist(\bfitz ,\bfitx ) \leq 0.01\| \bfitx \| 2\} . With this in place, we can give the proof of Theo-
rem 1.1. We restate our main result here for convenience.

Theorem 3.3. Suppose m \geq C0n for some universal constant C0 > 0. Assume the mea-
surement vectors \bfita 1, . . . ,\bfita m \in \BbbC n are drawn independently and uniformly from the unit sphere
\BbbS n - 1
\BbbC . For any 0 < \delta < 1, let \bfitz 0 be an initial estimate to \bfitx such that \| \bfitz 0  - \bfitx \| 2 \leq 0.01\delta \| \bfitx \| 2.

Let \tau be the stopping time defined in (3.1). Then with probability at least 1 - 14 exp( - c0n) it
holds that the iteration \bfitz k given by randomized Kaczmarz update rule (2.2) obeys

\BbbE \scrI k [dist(\bfitz k,\bfitx )1\tau =\infty ] \leq (1 - 0.03/n)k/2dist(\bfitz 0,\bfitx ).

Furthermore, the probability \BbbP (\tau < \infty ) \leq \delta 2. Here \BbbE \scrI k denotes the expectation with respect
to randomness \scrI k := \{ i0, i1, . . . , ik - 1\} conditioned on the high probability event of random
measurements \{ \bfita j\} mj=1 and c0 > 0 is a universal constant.
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Proof. From Theorems 3.1 and 3.2, we obtain that if m \geq C0n, then with probability at
least 1 - 14 exp( - c0n) it holds that

\BbbE ik

\bigl[ 
dist2(\bfitz k+1,\bfitx )1\tau >k+1

\bigm| \bigm| \bfitz k \in B
\bigr] 
\leq \BbbE ik

\bigl[ 
dist2(\bfitz k+1,\bfitx )1\tau >k

\bigm| \bigm| \bfitz k \in B
\bigr] 

= \BbbE ik

\bigl[ 
dist2(\bfitz k+1,\bfitx )

\bigm| \bigm| \bfitz k \in B
\bigr] 
1\tau >k

\leq (1 - 0.03/n) dist2(\bfitz k,\bfitx )1\tau >k.

Note that \bfitz k \in B is an event with respect to randomness \scrI k. Taking expectation gives

\BbbE \scrI k+1

\bigl[ 
dist2(\bfitz k+1,\bfitx )1\tau >k+1

\bigr] 
= \BbbE \scrI k

\bigl[ 
\BbbE ik

\bigl[ 
dist2(\bfitz k+1,\bfitx )1\tau >k+1

\bigm| \bigm| \bfitz k \in B
\bigr] \bigr] 

\leq (1 - 0.03/n) \BbbE \scrI k

\bigl[ 
dist2(\bfitz k,\bfitx )1\tau >k

\bigr] 
.

By induction, we arrive at the first part of the conclusion.
For the second part, define Yk := \| \bfitz k\wedge \tau  - \bfitx \| 22, where k \wedge \tau := min \{ k, \tau \} . Using the idea

similar to that of Theorem 3.1 in [34], we can check that Yk is a nonnegative supermartingale.
It then follows from the supermartingale maximum inequality that

\BbbP 

\Biggl( 
sup

1\leq k<\infty 
Yk \geq 0.012\| \bfitx \| 22

\Biggr) 
\leq Y0

0.012\| \bfitx \| 22
\leq \delta 2.

This completes the proof.

4. Proof of Theorem 3.2.

Proof of Theorem 3.2. For any \bfitz \in \BbbC n, set \bfith = e - i\phi (\bfitz )\bfitz  - \bfitx , where \phi (\bfitz ) is defined in
(2.3). Note that

| \bfita \ast 
j\bfitz | 2 = | \bfita \ast 

j\bfitx | 2 + 2\Re (\bfith \ast \bfita j\bfita 
\ast 
j\bfitx ) + | \bfita \ast 

j\bfith | 2.

Here \Re (\cdot ) denotes the real part for a complex number. It is easy to check that the function f
given in (2.5) can be rewritten as

f(\bfitz ) =
1

m

m\sum 
j=1

\Bigl( \bigm| \bigm| \bfita \ast 
j\bfith 
\bigm| \bigm| 2 + 2\Re (\bfith \ast \bfita j\bfita 

\ast 
j\bfitx ) + 2

\bigm| \bigm| \bfita \ast 
j\bfitx 
\bigm| \bigm| 2  - 2

\bigm| \bigm| \bfita \ast 
j\bfitz 
\bigm| \bigm| \bigm| \bigm| \bfita \ast 

j\bfitx 
\bigm| \bigm| \Bigr) .

To show that the function f satisfies the restricted strong convexity, from the definition it
suffices to give a lower bound for D\bfitz  - \bfitx ei\phi (\bfitz )f(\bfitz ) - f(\bfitz ). By some algebraic computation, we
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immediately have

D\bfitz  - \bfitx ei\phi (\bfitz )f(\bfitz ) - f(\bfitz )

=
2

m

m\sum 
j=1

\Biggl( 
1 - 

| \bfita \ast 
j\bfitx | 

| \bfita \ast 
j\bfitz | 

\Biggr) \Bigl( \bigm| \bigm| \bfita \ast 
j\bfith 
\bigm| \bigm| 2 + \Re (\bfith \ast \bfita j\bfita 

\ast 
j\bfitx )
\Bigr) 
 - 1

m

m\sum 
j=1

\bigl( \bigm| \bigm| \bfita \ast 
j\bfitz 
\bigm| \bigm|  - \bigm| \bigm| \bfita \ast 

j\bfitx 
\bigm| \bigm| \bigr) 2

=
1

m

m\sum 
j=1

\bigm| \bigm| \bfita \ast 
j\bfith 
\bigm| \bigm| 2 + 2

m

m\sum 
j=1

\Biggl( \bigm| \bigm| \bfita \ast 
j\bfitz 
\bigm| \bigm| \bigm| \bigm| \bfita \ast 

j\bfitx 
\bigm| \bigm|  - \bigm| \bigm| \bfita \ast 

j\bfitx 
\bigm| \bigm| 2  - | \bfita \ast 

j\bfitx | | \bfita \ast 
j\bfith | 2

| \bfita \ast 
j\bfitz | 

 - 
| \bfita \ast 

j\bfitx | \Re (\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitz | 

\Biggr) 

=
1

m

m\sum 
j=1

\bigm| \bigm| \bfita \ast 
j\bfith 
\bigm| \bigm| 2 + 2

m

m\sum 
j=1

| \bfita \ast 
j\bfitx | 3  - | \bfita \ast 

j\bfitz | | \bfita \ast 
j\bfitx | 2 + | \bfita \ast 

j\bfitx | \Re (\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitz | 

=
1

m

m\sum 
j=1

\bigm| \bigm| \bfita \ast 
j\bfith 
\bigm| \bigm| 2 + 2

m

m\sum 
j=1

| \bfita \ast 
j\bfitz | | \bfita \ast 

j\bfitx | \Re (\bfith \ast \bfita j\bfita 
\ast 
j\bfitx ) - | \bfita \ast 

j\bfitx | 2\Re (\bfith \ast \bfita j\bfita 
\ast 
j\bfitx ) - | \bfita \ast 

j\bfitx | 2| \bfita \ast 
j\bfith | 2

| \bfita \ast 
j\bfitz | (| \bfita \ast 

j\bfitz | + | \bfita \ast 
j\bfitx | )

=
1

m

m\sum 
j=1

\bigm| \bigm| \bfita \ast 
j\bfith 
\bigm| \bigm| 2  - 2

m

m\sum 
j=1

| \bfita \ast 
j\bfitx | 2| \bfita \ast 

j\bfith | 2

| \bfita \ast 
j\bfitz | (| \bfita \ast 

j\bfitz | + | \bfita \ast 
j\bfitx | )

+
2

m

m\sum 
j=1

| \bfita \ast 
j\bfitx | | \bfita \ast 

j\bfith | 2\Re (\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitz | (| \bfita \ast 

j\bfitz | + | \bfita \ast 
j\bfitx | )2

+
4

m

m\sum 
j=1

| \bfita \ast 
j\bfitx | \Re 2(\bfith \ast \bfita j\bfita 

\ast 
j\bfitx )

| \bfita \ast 
j\bfitz | (| \bfita \ast 

j\bfitz | + | \bfita \ast 
j\bfitx | )2

.(4.1)

Now we divide the indexes into two groups j \in I\alpha and j \in Ic\alpha , where I\alpha :=
\bigl\{ 
j : | \bfita \ast 

j\bfitx | \geq \alpha | \bfita \ast 
j\bfith | 
\bigr\} 

for some fixed parameter \alpha > 0. For convenience, we denote D\bfitz  - \bfitx ei\phi (\bfitz )f(\bfitz )  - f(\bfitz ) :=
1
m

\sum m
j=1 Tj . We claim that for any \alpha > 1 it holds that

(4.2) Tj \geq 
4\alpha 3

(\alpha + 1)(2\alpha + 1)2
\cdot 
\Re 2(\bfith \ast \bfita j\bfita 

\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

 - 8\alpha 2  - 5\alpha + 1

(\alpha  - 1)(2\alpha  - 1)2
\cdot | \bfita \ast 

j\bfith | 2 for j \in I\alpha 

and

(4.3) Tj \geq  - 3
\bigm| \bigm| \bfita \ast 

j\bfith 
\bigm| \bigm| 2 for j \in Ic\alpha .

This taken collectively with the identity (4.1) leads to a lower estimate

D\bfitz  - \bfitx ei\phi (\bfitz )f(\bfitz ) - f(\bfitz ) \geq 4\alpha 3

(\alpha + 1)(2\alpha + 1)2
\cdot 1

m

\sum 
j\in I\alpha 

\Re 2(\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

 - 8\alpha 2  - 5\alpha + 1

(\alpha  - 1)(2\alpha  - 1)2
\cdot 1

m

\sum 
j\in I\alpha 

| \bfita \ast 
j\bfith | 2  - 

3

m

\sum 
j\in Ic\alpha 

\bigm| \bigm| \bfita \ast 
j\bfith 
\bigm| \bigm| 2 ,(4.4)

leaving us with three quantities in the right-hand side to deal with. Let \rho := \| \bfith \| 2. From the
definition of \bfith , it is easy to check that \Im (\bfith \ast \bfitx ) = 0. According to Lemma 7.2, we immediately
obtain that for any 0 < \delta \leq 1 there exist universal constants C, c > 0 such that if \alpha \rho \leq 1/3
and m \geq C\delta  - 2 log(1/\delta )n, then with probability at least 1 - 6 exp( - c\delta 2n) it holds that

(4.5)
1

m

\sum 
j\in I\alpha 

\Re 2(\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\geq 1

n
\cdot 
\biggl( 
3

8
 - \alpha 2\rho 2

(0.99 + \alpha \rho )2
 - \delta 

\biggr) 
\| \bfith \| 22.
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For the second term, it follows from Lemma 7.1 that for m \geq C\delta  - 2n, with probability at least
1 - 2 exp( - c\delta 2n),

(4.6)
1

m

m\sum 
j=1

| \bfita \ast 
j\bfith | 2 \leq 

1 + \delta 

n
\| \bfith \| 22.

Finally, for the third term, applying Lemma 7.3, we have that when m \geq C\delta  - 2 log(1/\delta )n and
0 < \alpha \rho \leq 0.4, with probability at least 1 - 6 exp( - c\delta 2n),

(4.7)
1

m

\sum 
j\in Ic\alpha 

\bigm| \bigm| \bfita \ast 
j\bfith 
\bigm| \bigm| 2 \leq 1

n
\cdot 
\biggl( 

2\alpha 2\rho 2

0.99 + \alpha 2\rho 2
+ \delta 

\biggr) 
\| \bfith \| 22.

Setting \alpha := 12, \delta := 0.001 and putting (4.5), (4.6), (4.7) into (4.4), we obtain the conclusion
that with probability at least 1 - 14 exp( - c0n) it holds that

D\bfitz  - \bfitx ei\phi (\bfitz )f(\bfitz ) - f(\bfitz ) \geq 0.03

n
\| \bfith \| 22 for all \| \bfith \| 2 \leq 0.01,

provided m \geq C0n. Here C0, c0 are universal positive constants.
It remains to prove the claims. We first consider the case where j \in I\alpha . It follows from

(4.1) that

Tj =
\bigm| \bigm| \bfita \ast 

j\bfith 
\bigm| \bigm| 2  - 2| \bfita \ast 

j\bfitx | 2| \bfita \ast 
j\bfith | 2

| \bfita \ast 
j\bfitz | (| \bfita \ast 

j\bfitz | + | \bfita \ast 
j\bfitx | )

+
2| \bfita \ast 

j\bfitx | | \bfita \ast 
j\bfith | 2\Re (\bfith \ast \bfita j\bfita 

\ast 
j\bfitx )

| \bfita \ast 
j\bfitz | (| \bfita \ast 

j\bfitz | + | \bfita \ast 
j\bfitx | )2

+
4| \bfita \ast 

j\bfitx | \Re 2(\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitz | (| \bfita \ast 

j\bfitz | + | \bfita \ast 
j\bfitx | )2

.

From the definition of I\alpha , it is easy to see that when j \in I\alpha we have

(4.8) (1 - 1/\alpha )| \bfita \ast 
j\bfitx | \leq | \bfita \ast 

j\bfitx |  - | \bfita \ast 
j\bfith | \leq | \bfita \ast 

j\bfitz | \leq | \bfita \ast 
j\bfitx | + | \bfita \ast 

j\bfith | \leq (1 + 1/\alpha )| \bfita \ast 
j\bfitx | .

Thus, the second term of Tj obeys

| \bfita \ast 
j\bfitx | 2| \bfita \ast 

j\bfith | 2

| \bfita \ast 
j\bfitz | (| \bfita \ast 

j\bfitz | + | \bfita \ast 
j\bfitx | )

\leq \alpha 2

(\alpha  - 1)(2\alpha  - 1)
| \bfita \ast 

j\bfith | 2.

Similarly, the third term of Tj satisfies

| \bfita \ast 
j\bfitx | | \bfita \ast 

j\bfith | 2| \Re (\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )| 

| \bfita \ast 
j\bfitz | (| \bfita \ast 

j\bfitz | + | \bfita \ast 
j\bfitx | )2

\leq 
| \bfita \ast 

j\bfitx | 2| \bfita \ast 
j\bfith | 3

| \bfita \ast 
j\bfitz | (| \bfita \ast 

j\bfitz | + | \bfita \ast 
j\bfitx | )2

\leq \alpha 2

(\alpha  - 1)(2\alpha  - 1)2
| \bfita \ast 

j\bfith | 2.

Finally, using the upper bound in (4.8), we have

| \bfita \ast 
j\bfitx | \Re 2(\bfith \ast \bfita j\bfita 

\ast 
j\bfitx )

| \bfita \ast 
j\bfitz | (| \bfita \ast 

j\bfitz | + | \bfita \ast 
j\bfitx | )2

=
| \bfita \ast 

j\bfitx | 3

| \bfita \ast 
j\bfitz | (| \bfita \ast 

j\bfitz | + | \bfita \ast 
j\bfitx | )2

\cdot 
\Re 2(\bfith \ast \bfita j\bfita 

\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\geq \alpha 3

(\alpha + 1)(2\alpha + 1)2
\cdot 
\Re 2(\bfith \ast \bfita j\bfita 

\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

.
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Collecting the above three estimators, we have

Tj \geq 
4\alpha 3

(\alpha + 1)(2\alpha + 1)2
\cdot 
\Re 2(\bfith \ast \bfita j\bfita 

\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

 - 8\alpha 2  - 5\alpha + 1

(\alpha  - 1)(2\alpha  - 1)2
\cdot | \bfita \ast 

j\bfith | 2,

which proves the claim (4.2).
We next turn to consider the case where j /\in I\alpha . From the definition, we know Tj can be

denoted as

Tj = 2

\Biggl( 
1 - 

| \bfita \ast 
j\bfitx | 

| \bfita \ast 
j\bfitz | 

\Biggr) 
\Re (e - i\phi \bfith \ast \bfita j\bfita 

\ast 
j\bfitz ) - 

\bigl( 
| \bfita \ast 

j\bfitz |  - | \bfita \ast 
j\bfitx | 
\bigr) 2

for all j.

It then immediately gives

| Tj | \leq 
2
\bigm| \bigm| | \bfita \ast 

j\bfitz |  - | \bfita \ast 
j\bfitx | 
\bigm| \bigm| 

| \bfita \ast 
j\bfitz | 

\cdot | \bfith \ast \bfita j\bfita 
\ast 
j\bfitz | +

\bigl( 
| \bfita \ast 

j\bfitz |  - | \bfita \ast 
j\bfitx | 
\bigr) 2 \leq 3

\bigm| \bigm| \bfita \ast 
j\bfith 
\bigm| \bigm| 2 ,

where we use the Cauchy--Schwarz inequality and the fact that
\bigm| \bigm| | \bfita \ast 

j\bfitz |  - | \bfita \ast 
j\bfitx | 
\bigm| \bigm| \leq | \bfita \ast 

j\bfith | in the
last inequality. This completes the claim (4.3).

5. Numerical experiments. In this section, we demonstrate the efficiency and robustness
of the randomized Kaczmarz method via a series of numerical experiments in comparison with
WF [7], TWF [10], and TAF [39]. Here WF, TWF, and TAF are selected due to their wide
applications and high efficiency for solving the phase retrieval problem. All experiments are
carried out on a laptop computer with a 2.4GHz Intel Core i7 Processor, 8 GB 2133 MHz
LPDDR3 memory, and MATLAB R2016a.

5.1. Recovery of signals with noiseless measurements. In our numerical experiments,
the target vector \bfitx \in \BbbC n is chosen randomly from the standard complex Gaussian distribution,
that is, \bfitx \sim \scrN (0, In) + i\scrN (0, In). The measurement vectors \bfita j , j = 1, . . . ,m, are generated
randomly from standard complex Gaussian distribution or the coded diffraction pattern (CDP)
model. For the CDP model, we use masks of octanary patterns as in [7]. The code for WF,
TWF, and TAF can be downloaded1 with suggested parameters.

Example 5.1. In this example, we test the empirical success rate of the randomized Kacz-
marz method versus the number of measurements. We set n = 1000. For the complex
Gaussian case, we vary m within the range [2n, 6n]. For the CDP case, we set the number of
masks m/n = L from 2 to 6. For each m, we run 100 time trials to calculate the success rate.
Here we say a trial has successfully reconstructed the target signal if the algorithm returns
a vector \bfitz T which has a small relative error, that is, when dist(\bfitz T  - \bfitx )/\| \bfitx \| 2 \leq 10 - 5. We
use the initial point suggested in [7] for all the tested algorithms. The results are plotted in
Figure 1. It can be seen that the empirical success rate of the randomized Kaczmarz method
is comparable with that of TAF and even slightly better than TWF and WF.

1from https://viterbi-web.usc.edu/\sim soltanol/WFcode.html, https://yuxinchen2020.github.io/Software.html,
and https://gangwg.github.io/TAF/codes.html
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Figure 1. The empirical success rate for different m/n based on 100 random trails. (a) Success rate for
complex Gaussian case. (b) Success rate for CDP case.

Example 5.2. In this example, we compare the computational complexity of the random-
ized Kaczmarz method with those of WF, TWF, and TAF for the complex Gaussian and CDP
cases. We set n = 1000. For the complex Gaussian case, we choose m = 5n. For the CDP
case, we choose the number of masks to be L = 6. Figure 2 shows the relative error versus
the number of passes through the data (i.e., computational cost measured by the number of
gradient computations divided by m). It can be seen that the randomized Kaczmarz method
offers substantial improvements in computational complexity over state-of-the-art algorithms.
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Figure 2. Relative error versus number of passes for the randomized Kaczmarz, WF, TWF, and TAF
methods: (a) The complex Gaussian case. (b) The CDP case.

5.2. Robustness to Poisson and Gaussian noises. We now explore the performance of the
randomized Kaczmarz method under noisy measurements. Two types of noise distributions are
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1002 MENG HUANG AND YANG WANG

considered. One is Poisson noises, bj =
\sqrt{} 
Poisson(| \langle \bfita j ,\bfitx \zeta \rangle | 2) for all j = 1, . . . ,m, where \bfitx \zeta is

the ground truth with \bfitx \zeta = \zeta \bfitx . The other is additive white Gaussian noises, bj = | \langle \bfita j ,\bfitx \rangle | +\eta j ,
where \eta j are i.i.d. Gaussian random variables. The measurements \bfita j \in \BbbC n are complex
Gaussian random vectors.

Example 5.3. In this example, we compare the computational complexity of the ran-
domized Kaczmarz method with those of WF, TWF, and TAF under noisy measurements.
We set n = 1000 and the number of measurements to be m = 5n. For Gaussian noises,
\eta j \sim 0.01 \cdot N(0, 1). For Poisson noises, we choose \zeta = 10. The relative error versus the num-
ber of passes through the data is presented in Figure 3. We observe that all the algorithms
reach almost the same accuracy. Moreover, the randomized Kaczmarz method requires the
smallest number of passes to converge for both the Gaussian and the Poisson noises.
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Figure 3. Relative error versus number of passes for the randomized Kaczmarz, WF, TWF, and TAF
methods under noisy measurements: (a) Gaussian noises. (b) Poisson noises.

Example 5.4. In this example, we add different levels of Gaussian and Poisson noises to
explore the relationship between the signal-to-noise rate (SNR) of the measurements and the
mean square error (MSE) of the recovered signal. Specifically, SNR and MSE are evaluated
by

MSE := 10 log10
dist2(\bfitz ,\bfitx )

\| \bfitx \| 2
and SNR = 10 log10

\sum m
i=1 | \bfita \ast 

j\bfitx | 2

\| \eta \| 2
,

where \bfitz is the output of the algorithms. Here, for Poisson noises, we can think of \eta j :=

bj  - | \bfita \ast 
j\bfitx | for all j = 1, . . . ,m, where bj =

\sqrt{} 
Poisson(| \bfita \ast 

j\bfitx | 2). We choose n = 1000 and

m = 5n. The SNR varies from 20db to 60db. The results are shown in Figure 4. We can see
that the randomized Kaczmarz method performs well for noisy phase retrieval.

5.3. Recovery of natural image. We next compare the performance of the randomized
Kaczmarz method on recovering a natural image from masked Fourier intensity measurements.
To take the advantage of the FFT, we consider a set of measurements corresponding to one
mask instead of one measurement for each iteration of the randomized Kaczmarz method.
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Figure 4. SNR versus relative MSE on a dB-scale under the noisy measurements: (a) Gaussian noises.
(b) Poisson noises.

The image is the Milky Way Galaxy with resolution 1080 \times 1920. The colored image has
RGB channels. We use L = 16 random octanary patterns to obtain the Fourier intensity
measurements for each R/G/B channel as in [7]. Table 1 lists the average time elapsed and
the number of passes needed to achieve the relative errors 10 - 5 and 10 - 10 over the three
RGB channels. We can see that the randomized Kaczmarz method runs faster than WF,
TWF, and TAF. It outperforms the other three algorithms in both the number of passes and
the computational time cost. Furthermore, the randomized Kaczmarz method performs well
even with L = 5 under 100 passes. Figure 5 shows the image recovered by the randomized
Kaczmarz method with L = 5.

Table 1
Time elapsed and number of passes among algorithms on recovery of galaxy image.

Algorithm
The Milky Way Galaxy

10 - 5 10 - 10

\# Passes Time(s) \# Passes Time(s)

Kaczmarz \bfseven \bfeight \bfseven .\bfeight \bfone \bfzero \bfnine \bfthree .\bffour 

WF 161 356.7 241 467.6

TAF 71 228.8 132 368.2

TWF 82 280.1 145 378.6

5.4. Random initialization. In this section, we investigate the performance of the random-
ized Kaczmarz method when the initial point is generated randomly according to the standard
complex Gaussian distribution. We set n = 1000. The measurement vectors \bfita j , j = 1, . . . ,m,
are generated randomly from standard complex Gaussian distribution. Figure 6(a) compares
the empirical success rate of the randomized Kaczmarz method under random and spectral
initialization. It can be seen that the randomized Kaczmarz method with spectral initializa-
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1004 MENG HUANG AND YANG WANG

Figure 5. The Milky Way Galaxy image: The randomized Kaczmarz method with L = 5 takes 100 passes,
computation time is 64.7 s, and relative error is 1.36\times 10 - 15.
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Figure 6. The performance of the randomized Kaczmarz method under random and spectral initialization:
(a) The empirical success rate. (b) The relative error.

tion has a higher success rate than the random initialization. However, it requires at most 1.5n
more numbers of measurements for the random initialization to recover all the test signals.
Figure 6(b) shows the relative error as a function of the number of passes through the data
under m = 5n. The experiments show that the randomized Kaczmarz method is not sensitive
to the initial point.

6. Discussions. This paper considers convergence of the randomized Kaczmarz method
for phase retrieval in the complex setting. A linear convergence rate has been established by
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LINEAR CONVERGENCE OF RANDOMIZED KACZMARZ METHOD 1005

combining a restricted strong convexity condition and tools from stochastic processes, which
gives a positive answer for the conjecture given in [34, section 7.2].

There are some interesting problems for future research. First, it has been shown numer-
ically that the randomized Kaczmarz method is also efficient for solving the Fourier phase
retrieval problem, at least when the measurements follow the CDP model. It is of practical
interest to provide some theoretical guarantees for it. Second, the convergence of the ran-
domized Kaczmarz method relies on a spectral initialization. Some numerical evidence has
shown that the randomized Kaczmarz method works well even if we start from a random
initialization. It is interesting to provide some theoretical justifications for it.

7. Appendix. The following lemma states that 1
m

\sum m
j=1 \bfita j\bfita 

\ast 
j is well behaved, provided

\bfita j \in \BbbC n are drawn uniformly from the unit sphere. A similar result for the real case can be
found in [35, Theorem 4.6.1].

Lemma 7.1. Suppose that the vectors \bfita 1, . . . ,\bfita m \in \BbbC n are drawn uniformly from the unit
sphere \BbbS n - 1

\BbbC . For any 0 < \delta \leq 1, if m \geq C\delta  - 2n, then with probability at least 1 - 2 exp( - c\delta 2m)
it holds \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

m

m\sum 
j=1

\bfita j\bfita 
\ast 
j  - 

1

n
\cdot I

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq \delta 

n
.

Here C and c are universal positive constants.

Proof. Assume that \scrN is a 1/4-net of the complex unit sphere \BbbS n - 1
\BbbC \subset \BbbC n. It then follows

from [35, Lemma 4.4.3] that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

m

m\sum 
j=1

\bfita j\bfita 
\ast 
j  - 

1

n
\cdot I

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 2max
\bfith \in \scrN 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1m
m\sum 
j=1

| \bfita \ast 
j\bfith | 2  - 

1

n

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
Here the cardinality | \scrN | \leq 92n. Due to the unitary invariance of \bfita j , for any fixed \bfith \in \BbbS n - 1

\BbbC 
we have

\BbbE | \bfita \ast 
j\bfith | 2 = \BbbE | \bfita \ast 

j\bfite 1| 2 = \BbbE | \bfita \ast 
j\bfite 2| 2 = \cdot \cdot \cdot = \BbbE | \bfita \ast 

j\bfite n| 2 =
1

n
\BbbE \| \bfita j\| 22 =

1

n
,

where \bfite j \in \BbbC n are vectors whose jth entry is 1 and all the others entries are 0. It means
that for any fixed \bfith \in \BbbS n - 1

\BbbC \subset \BbbC n the terms | \bfita \ast 
j\bfith | 2  - 1/n are independent, mean zero, sub-

exponential random variables with their subexponential norm bounded by K = c1/n for some
universal constant c1 > 0 [35, Theorem 3.4.6]. Using Bernstein's inequality, we obtain that
for any 0 < \delta \leq 1 with probability at least 1 - 2 exp( - c2\delta 

2m),\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1m
m\sum 
j=1

| \bfita \ast 
j\bfith | 2  - 

1

n

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq \delta 

2n

holds for some positive constant c2. Taking the union bound over \scrN , we obtain that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

m

m\sum 
j=1

\bfita j\bfita 
\ast 
j  - 

1

n
\cdot I

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq \delta 

n
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holds with probability at least

1 - 2 exp( - c2\delta 
2m) \cdot 92n \geq 1 - 2 exp( - c\delta 2m),

provided m \geq C\delta  - 2n for some constants C, c > 0. This completes the proof.

Lemma 7.2. Let \bfitx be a vector in \BbbC n with \| \bfitx \| 2 = 1 and \lambda \geq 3. Assume that the vectors
\bfita 1, . . . ,\bfita m \in \BbbC n are drawn uniformly from the unit sphere \BbbS n - 1

\BbbC . For any fixed 0 < \delta \leq 1,
there exist universal constants C, c > 0 such that if m \geq C\delta  - 2 log(1/\delta )n, then with probability
at least 1 - 6 exp( - c\delta 2n) it holds that

1

m

m\sum 
j=1

\Re 2(\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\cdot 1\{ \lambda | \bfita \ast 
j\bfitx | \geq | \bfita \ast 

j\bfith | \} \geq 1

n
\cdot 
\biggl( 
3

8
 - 1

(1 + 0.99\lambda )2
 - \delta 

\biggr) 

for all \bfith \in \BbbC n with \| \bfith \| 2 = 1 and \Im (\bfith \ast \bfitx ) = 0.

Proof. We first prove the result for any fixed \bfith and then apply an \varepsilon -net argument to
develop a uniform bound for it. To begin with, we introduce a series of auxiliary random
Lipschitz functions to approximate the indicator functions. For any j = 1, . . . ,m, define

\chi j(t) :=

\left\{     
1 if t \leq 0.99\lambda | \bfita \ast 

j\bfitx | ;
 - 100

\lambda | \bfita \ast 
j\bfitx | 

t+ 100 if 0.99\lambda | \bfita \ast 
j\bfitx | \leq t \leq \lambda | \bfita \ast 

j\bfitx | ;
0 otherwise.

It then gives
(7.1)
\Re 2(\bfith \ast \bfita j\bfita 

\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\cdot 1\{ \lambda | \bfita \ast 
j\bfitx | \geq | \bfita \ast 

j\bfith | \} \geq 
\Re 2(\bfith \ast \bfita j\bfita 

\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\chi j(| \bfita \ast 
j\bfith | ) \geq 

\Re 2(\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\cdot 1\{ 0.99\lambda | \bfita \ast 
j\bfitx | \geq | \bfita \ast 

j\bfith | \} .

For any fixed \bfith , since \bfita 1, . . . ,\bfita m are random vectors uniformly distributed on the unit sphere,

it means that the terms
\Re 2(\bfith \ast \bfita j\bfita 

\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\chi j(| \bfita \ast 
j\bfith | ) are independent subexponential random vari-

ables with the maximal subexponential norm K = c1/n for some universal constant c1 > 0
[35, Theorem 3.4.6]. Applying Bernstein's inequality gives that for any fixed 0 < \delta \leq 1 the
following holds:

(7.2)
1

m

m\sum 
j=1

\Re 2(\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\chi j(| \bfita \ast 
j\bfith | ) \geq \BbbE 

\biggl( 
\Re 2(\bfith \ast \bfita 1\bfita 

\ast 
1\bfitx )

| \bfita \ast 
1\bfitx | 2

\chi 1(| \bfita \ast 
1\bfith | )

\biggr) 
 - \delta 

4n

with probability at least 1 - 2 exp( - c2\delta 
2m), where c2 is a universal positive constant.

Next, we give a uniform bound for the estimate (7.2). Construct an \varepsilon -net \scrN over the unit
sphere in \BbbC n with cardinality | \scrN | \leq (1 + 2

\varepsilon )
2n. Then we have

1

m

m\sum 
j=1

\Re 2(\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\chi j(| \bfita \ast 
j\bfith | ) \geq \BbbE 

\biggl( 
\Re 2(\bfith \ast \bfita 1\bfita 

\ast 
1\bfitx )

| \bfita \ast 
1\bfitx | 2

\chi 1(| \bfita \ast 
1\bfith | )

\biggr) 
 - \delta 

4n
for all \bfith \in \scrN 
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with probability at least

1 - 2 exp( - c2\delta 
2m) \cdot 

\biggl( 
1 +

2

\varepsilon 

\biggr) 2n

.

For any \bfith with \| \bfith \| 2 = 1, there exists an \bfith 0 \in \scrN such that \| \bfith  - \bfith 0\| 2 \leq \varepsilon . We claim that
there exist universal constants C \prime , c3 > 0 such that if m \geq C \prime n, then with probability at least
1 - 2 exp( - c3m) it holds that

(7.3)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1m
m\sum 
j=1

\Re 2(\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\chi j(| \bfita \ast 
j\bfith | ) - 

1

m

m\sum 
j=1

\Re 2(\bfith \ast 
0\bfita j\bfita 

\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\chi j(| \bfita \ast 
j\bfith 0| )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 205\varepsilon 

n
.

Choosing \varepsilon := \delta /820, we then obtain that

(7.4)
1

m

m\sum 
j=1

\Re 2(\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\chi j(| \bfita \ast 
j\bfith | ) \geq \BbbE 

\biggl( 
\Re 2(\bfith \ast \bfita 1\bfita 

\ast 
1\bfitx )

| \bfita \ast 
1\bfitx | 2

\chi 1(| \bfita \ast 
1\bfith | )

\biggr) 
 - \delta 

2n
for all \| \bfith \| 2 = 1

holds with probability at least

1 - 2 exp( - c3m) - 2 exp( - c2\delta 
2m)

\biggl( 
1 +

2

\varepsilon 

\biggr) 2n

\geq 1 - 4 exp( - c4\delta 
2m),

provided m \geq C log(1/\delta )\delta  - 2n for some positive constant C. Here c4 is a universal positive
constant. To give a lower bound for the expectation in (7.4), recognize that if \xi \in \BbbC n is a
complex Gaussian random vector, then \xi /\| \xi \| 2 is a vector uniformly distributed on the unit
sphere. Since \| \xi \| 2 \leq (1 + \delta 1)

\surd 
n holds for any fixed 0 < \delta 1 \leq 1 [35, Theorem 3.1.1] with

probability at least 1 - 2 exp( - c5\delta 
2
1n) for some universal constant c5 > 0, it then follows from

Lemma 7.4 that

\BbbE 
\biggl( 
\Re 2(\bfith \ast \bfita 1\bfita 

\ast 
1\bfitx )

| \bfita \ast 
1\bfitx | 2

\cdot 1\{ \lambda | \bfita \ast 
1\bfitx | \geq | \bfita \ast 

1\bfith | \} 

\biggr) 
= \BbbE 

\biggl( 
\Re 2(\bfith \ast \xi \xi \ast \bfitx )

\| \xi \| 22| \xi \ast \bfitx | 2
\cdot 1\{ \lambda | \xi \ast \bfitx | \geq | \xi \ast \bfith | \} 

\biggr) 
\geq 1

(1 + 3\delta 1)n
\cdot \BbbE 
\biggl( 
\Re 2(\bfith \ast \xi \xi \ast \bfitx )

| \xi \ast \bfitx | 2
\cdot 1\{ \lambda | \xi \ast \bfitx | \geq | \xi \ast \bfith | \} 

\biggr) 
\geq 1

(1 + 3\delta 1)n
\cdot 
\biggl( 
3

8
 - 1

(\lambda + 1)2

\biggr) 
.

Taking \delta 1 := \delta /2, we obtain that for any \lambda \geq 2.95 with probability at least 1 - 2 exp( - c6\delta 
2n)

it holds that

(7.5) \BbbE 
\biggl( 
\Re 2(\bfith \ast \bfita 1\bfita 

\ast 
1\bfitx )

| \bfita \ast 
1\bfitx | 2

\cdot 1\{ \lambda | \bfita \ast 
1\bfitx | \geq | \bfita \ast 

1\bfith | \} 

\biggr) 
\geq 1

n
\cdot 
\biggl( 
3

8
 - 1

(\lambda + 1)2
 - \delta 

2

\biggr) 
,

where c6 > 0 is a universal constant. Collecting (7.1), (7.4), and (7.5) together, we obtain the
conclusion that for any \lambda \geq 3 with probability at least 1 - 6 exp( - c\delta 2n) it holds that

\Re 2(\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\cdot 1\{ \lambda | \bfita \ast 
j\bfitx | \geq | \bfita \ast 

j\bfith | \} \geq 1

n
\cdot 
\biggl( 
3

8
 - 1

(1 + 0.99\lambda )2
 - \delta 

\biggr) 
,
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1008 MENG HUANG AND YANG WANG

provided m \geq C log(1/\delta )\delta  - 2n. Here c is a universal positive constant.
Finally, it remains to prove the claim (7.3). To this end, we claim that for all j = 1, . . . ,m

it holds that \bigm| \bigm| \bigm| \bigm| \bigm| \Re 2(\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\chi j(| \bfita \ast 
j\bfith | ) - 

\Re 2(\bfith \ast 
0\bfita j\bfita 

\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\chi j(| \bfita \ast 
j\bfith 0| )

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 101| \bfita \ast 

j\bfith | | \bfita \ast 
j (\bfith  - \bfith 0)| + 101| \bfita \ast 

j\bfith 0| | \bfita \ast 
j (\bfith  - \bfith 0)| .(7.6)

Indeed, from the definition of \chi j(t), if both | \bfita \ast 
j\bfith | > \lambda | \bfita \ast 

j\bfitx | and | \bfita \ast 
j\bfith 0| > \lambda | \bfita \ast 

j\bfitx | , then the
above inequality holds directly. Thus, we only need to consider the case where | \bfita \ast 

j\bfith | \leq \lambda | \bfita \ast 
j\bfitx | 

or | \bfita \ast 
j\bfith 0| \leq \lambda | \bfita \ast 

j\bfitx | . Without loss of generality, we assume | \bfita \ast 
j\bfith | \leq \lambda | \bfita \ast 

j\bfitx | . Then we have\bigm| \bigm| \bigm| \bigm| \bigm| \Re 2(\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\chi j(| \bfita \ast 
j\bfith | ) - 

\Re 2(\bfith \ast 
0\bfita j\bfita 

\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\chi j(| \bfita \ast 
j\bfith 0| )

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq | \bfita \ast 

j\bfith | 2
\bigm| \bigm| \chi j(| \bfita \ast 

j\bfith | ) - \chi j(| \bfita \ast 
j\bfith 0| )

\bigm| \bigm| + \bigl( | \bfita \ast 
j\bfith | + | \bfita \ast 

j\bfith 0| 
\bigr) 
| \bfita \ast 

j (\bfith  - \bfith 0)| 

\leq 
100| \bfita \ast 

j\bfith | 2

\lambda | \bfita \ast 
j\bfitx | 

| \bfita \ast 
j (\bfith  - \bfith 0)| +

\bigl( 
| \bfita \ast 

j\bfith | + | \bfita \ast 
j\bfith 0| 

\bigr) 
| \bfita \ast 

j (\bfith  - \bfith 0)| 

\leq 101| \bfita \ast 
j\bfith | | \bfita \ast 

j (\bfith  - \bfith 0)| + | \bfita \ast 
j\bfith 0| | \bfita \ast 

j (\bfith  - \bfith 0)| ,

which gives (7.6). According to Lemma 7.1, we obtain that for m \geq C \prime n with probability at
least 1 - 2 exp( - c3n) it holds that\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1m

m\sum 
j=1

\Re 2(\bfith \ast \bfita j\bfita 
\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\chi j(| \bfita \ast 
j\bfith | ) - 

1

m

m\sum 
j=1

\Re 2(\bfith \ast 
0\bfita j\bfita 

\ast 
j\bfitx )

| \bfita \ast 
j\bfitx | 2

\chi j(| \bfita \ast 
j\bfith 0| )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 101

m

m\sum 
j=1

| \bfita \ast 
j\bfith | | \bfita \ast 

j (\bfith  - \bfith 0)| +
101

m

m\sum 
j=1

| \bfita \ast 
j\bfith 0| | \bfita \ast 

j (\bfith  - \bfith 0)| 

\leq 101

\sqrt{}    1

m

m\sum 
j=1

| \bfita \ast 
j\bfith | 2

\sqrt{}    1

m

m\sum 
j=1

| \bfita \ast 
j (\bfith  - \bfith 0)| 2 + 101

\sqrt{}    1

m

m\sum 
j=1

| \bfita \ast 
j\bfith 0| 2

\sqrt{}    1

m

m\sum 
j=1

| \bfita \ast 
j (\bfith  - \bfith 0)| 2

\leq 205\varepsilon 

n
,

which proves the claim (7.3).

Lemma 7.3. Let \bfitx be a vector in \BbbC n with \| \bfitx \| 2 = 1 and 0 < \lambda \leq 0.4. Assume that
the vectors \bfita 1, . . . ,\bfita m \in \BbbC n are drawn uniformly from the unit sphere \BbbS n - 1

\BbbC . For any fixed
0 < \delta \leq 1, there exist universal constants C, c > 0 such that for m \geq C\delta  - 2 log(1/\delta )n, with
probability at least 1 - 6 exp( - c\delta 2n), it holds that

1

m

m\sum 
j=1

| \bfita \ast 
j\bfith | 2 \cdot 1\{ | \bfita \ast 

j\bfitx | \leq \lambda | \bfita \ast 
j\bfith | \} \leq 2\lambda 2

(\lambda 2 + 0.99)n
+

\delta 

n

for all \bfith \in \BbbC n with \| \bfith \| 2 = 1 and \Im (\bfith \ast \bfitx ) = 0.
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LINEAR CONVERGENCE OF RANDOMIZED KACZMARZ METHOD 1009

Proof. Due to the non-Lipschitz property of indicator functions, we introduce a series of
auxiliary random Lipschitz functions to approximate them. For any j = 1, . . . ,m, define

\chi j(t) :=

\left\{     
t if t \geq | \bfita \ast 

j\bfitx | 2/\lambda 2;

100t - 99| \bfita \ast 
j\bfitx | 2

\lambda 2 if 0.99| \bfita \ast 
j\bfitx | 2/\lambda 2 \leq t \leq | \bfita \ast 

j\bfitx | 2/\lambda 2;

0 otherwise.

Then it is easy to check that

(7.7)
1

m

m\sum 
j=1

| \bfita \ast 
j\bfith | 2 \cdot 1\{ | \bfita \ast 

j\bfitx | \leq \lambda | \bfita \ast 
j\bfith | \} \leq 1

m

m\sum 
j=1

\chi j(| \bfita \ast 
j\bfith | 2) \leq 

1

m

m\sum 
j=1

| \bfita \ast 
j\bfith | 2 \cdot 1\{ 0.99| \bfita \ast 

j\bfitx | \leq \lambda | \bfita \ast 
j\bfith | \} .

For any fixed \bfith , since \bfita 1, . . . ,\bfita m are drawn uniformly from the unit sphere \BbbS n - 1
\BbbC , the terms

\chi j(| \bfita \ast 
j\bfith | 2) are independent subexponential random variables with the maximal subexponential

norm K = c1/n for some universal constant c1 > 0. According to Bernstein's inequality, for
any fixed 0 < \delta \leq 1, with probability at least 1 - 2 exp( - c2\delta 

2m), it holds that

(7.8)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1m
m\sum 
j=1

\chi j(| \bfita \ast 
j\bfith | 2) - \BbbE 

\bigl[ 
\chi 1(| \bfita \ast 

1\bfith | 2)
\bigr] \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq \delta 

4n
,

where c2 is a universal positive constant.
To give a uniform bound for the estimate (7.8), we construct an \varepsilon -net \scrN over the unit

sphere in \BbbC n with cardinality | \scrN | \leq (1 + 2
\varepsilon )

2n. Then, for any \bfith with \| \bfith \| 2 = 1, there exists
an \bfith 0 \in \scrN such that \| \bfith  - \bfith 0\| 2 \leq \varepsilon . Note that \chi j(t) is a Lipschitz function with Lipschitz
constant 100. It then follows from Lemma 7.1 that for m \geq C \prime n with probability at least
1 - 2 exp( - c3m) it holds that\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1m

m\sum 
j=1

\chi j(| \bfita \ast 
j\bfith | 2) - 

1

m

m\sum 
j=1

\chi j(| \bfita \ast 
j\bfith 0| 2)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 100

m

m\sum 
j=1

\bigl( 
| \bfita \ast 

j\bfith | + | \bfita \ast 
j\bfith 0| 

\bigr) 
| \bfita \ast 

j (\bfith  - \bfith 0)| 

\leq 100

\sqrt{}    1

m

m\sum 
j=1

| \bfita \ast 
j\bfith | 2

\sqrt{}    1

m

m\sum 
j=1

| \bfita \ast 
j (\bfith  - \bfith 0)| 2 + 100

\sqrt{}    1

m

m\sum 
j=1

| \bfita \ast 
j\bfith 0| 2

\sqrt{}    1

m

m\sum 
j=1

| \bfita \ast 
j (\bfith  - \bfith 0)| 2

\leq 202\varepsilon 

n
,

where the third line follows from the Cauchy--Schwarz inequality. Choosing \varepsilon := \delta /808 and
taking the union bound over \scrN , we obtain that

(7.9)
1

m

m\sum 
j=1

\chi j(| \bfita \ast 
j\bfith | 2) \geq \BbbE 

\left(  1

m

m\sum 
j=1

\chi 1(| \bfita \ast 
1\bfith | 2)

\right)   - \delta 

2n
for all \| \bfith \| 2 = 1

D
ow

nl
oa

de
d 

07
/0

5/
22

 to
 2

19
.2

39
.2

27
.1

73
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1010 MENG HUANG AND YANG WANG

holds with probability at least

1 - 2 exp( - c3m) - 2 exp( - c2\delta 
2m)

\biggl( 
1 +

2

\varepsilon 

\biggr) 2n

\geq 1 - 4 exp( - c4\delta 
2m),

provided m \geq C\delta  - 2 log(1/\delta )n for some positive constants C, c4.
Finally, we need to lower bound the expectation. To this end, let \xi \in \BbbC n be a complex

Gaussian random vector. We claim that for any 0 < \lambda \leq 
\sqrt{} 

5 - 
\surd 
21

2 it holds that

(7.10) \BbbE 
\bigl( 
| \xi \ast \bfith | 2 \cdot 1\{ | \xi \ast \bfitx | \leq \lambda | \xi \ast \bfith | \} 

\bigr) 
\leq 2\lambda 2

\lambda 2 + 1
.

Note that \xi /\| \xi \| 2 is a vector uniformly distributed on the unit sphere, and the inequality
\| \xi \| 2 \leq (1 - \delta 0)

\surd 
n holds for any fixed 0 \leq \delta 0 \leq 1 with probability at least 1 - 2 exp( - c5\delta 

2
0n)

[35, Theorem 3.1.1]. It then gives that for any 0 < \lambda \leq 
\sqrt{} 

5 - 
\surd 
21

2 with probability at least

1 - 2 exp( - c5\delta 
2
0n) we have

\BbbE 
\Bigl( 
| \bfita \ast 

1\bfith | 2 \cdot 1\{ | \bfita \ast 
1\bfitx | \leq \lambda | \bfita \ast 

1\bfith | \} 
\Bigr) 
= \BbbE 

\biggl( 
| \xi \ast \bfith | 2

\| \xi \| 22
\cdot 1\{ | \xi \ast \bfitx | \leq \lambda | \xi \ast \bfith | \} 

\biggr) 
\leq 1

(1 - \delta 0)n
\cdot \BbbE 
\bigl( 
| \xi \ast \bfith | 2 \cdot 1\{ | \xi \ast \bfitx | \leq \lambda | \xi \ast \bfith | \} 

\bigr) 
\leq 1

(1 - \delta 0)n
\cdot 2\lambda 2

\lambda 2 + 1
.(7.11)

Taking the constant \delta 0 = \delta /3, it then follows from (7.7), (7.9), and (7.11) that for any fixed
0 < \lambda \leq 0.4, with probability at least 1 - 6 exp( - c\delta 2n), it holds that

1

m

m\sum 
j=1

| \bfita \ast 
j\bfith | 2 \cdot 1\{ | \bfita \ast 

j\bfitx | \leq \lambda | \bfita \ast 
j\bfith | \} \leq 2\lambda 2

(\lambda 2 + 0.99)n
+

\delta 

n
,

provided m \geq C\delta  - 2 log(1/\delta )n, where c is a universal positive constant. This completes the
proof.

It remains to prove the claim (7.10). Indeed, due to the unitary invariance of the Gaussian
random vector, without loss of generality, we assume \bfith = \bfite 1 and \bfitx = \sigma \bfite 1 + \tau ei\phi \bfite 2, where
\sigma = \bfith \ast \bfitx \in \BbbR , | \sigma | \leq 1, and \tau =

\surd 
1 - \sigma 2. Let \xi 1, \xi 2 be the first and second entries of \xi . Denote

\xi 1 = \xi 1,\Re + i\xi 1,\Im and \xi 2 = \xi 2,\Re + i\xi 2,\Im , where \xi 1,\Re , \xi 1,\Im , \xi 2,\Re , \xi 2,\Im are independent Gaussian
random variables with distribution \scrN (0, 1/2). Then the inequality | \xi \ast \bfitx | \leq \lambda | \xi \ast \bfith | is equivalent
to

(\sigma \xi 1,\Re + \tau (cos\phi \xi 2,\Re + sin\phi \xi 2,\Im ))
2 + (\sigma \xi 1,\Im  - \tau (sin\phi \xi 2,\Re  - cos\phi \xi 2,\Im ))

2 \leq \lambda (\xi 21,\Re + \xi 21,\Im ).

To prove the inequality (7.10), we take the polar coordinates transformations and denote

\xi 1,\Re = r1 cos \theta 1
\xi 1,\Im = r1 sin \theta 1

\sigma \xi 1,\Re + \tau (cos\phi \xi 2,\Re + sin\phi \xi 2,\Im ) = r2 cos \theta 2
\sigma \xi 1,\Im  - \tau (sin\phi \xi 2,\Re  - cos\phi \xi 2,\Im ) = r2 sin \theta 2

\right\}       
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LINEAR CONVERGENCE OF RANDOMIZED KACZMARZ METHOD 1011

with r1, r2 \in (0,+\infty ), \theta 1, \theta 2 \in [0, 2\pi ]. Then the expectation can be written as

G(\lambda , \sigma ) := \BbbE 
\bigl( 
| \xi \ast \bfith | 2 \cdot 1\{ | \xi \ast \bfitx | \leq \lambda | \xi \ast \bfith | \} 

\bigr) 
=

1

\pi 2

\int 2\pi 

0

\int 2\pi 

0

\int +\infty 

0

\int \lambda \cdot r1

0

r31r2
\tau 2

e - (r21+r22)/\tau 
2 \cdot e2\sigma r1r2 \mathrm{c}\mathrm{o}\mathrm{s}(\theta 1 - \theta 2)/\tau 2dr2dr1d\theta 1d\theta 2.

It gives

\partial G(\lambda , \sigma )

\partial \lambda 
=

1

\pi 2

\int 2\pi 

0

\int 2\pi 

0

\int +\infty 

0
\lambda \cdot r51/\tau 2 \cdot e - (1+\lambda 2)r21/\tau 

2 \cdot e2\sigma \lambda r21 \mathrm{c}\mathrm{o}\mathrm{s}(\theta 1 - \theta 2)/\tau 2dr1d\theta 1d\theta 2

=
1

\pi 2

\int 2\pi 

0

\int 2\pi 

0

\lambda \tau 4

(1 + \lambda 2  - 2\lambda \sigma cos(\theta 1  - \theta 2))3
d\theta 1d\theta 2

= 4\tau 4 \cdot \lambda (1 + \lambda 4 + 2\lambda 2 + 2\lambda 2\sigma 2)\sqrt{} 
(1 + \lambda 2 + 2\lambda \sigma )5(1 + \lambda 2  - 2\lambda \sigma )5

\leq 
2\tau 4(\mu 2

+ + \mu 2
 - )

(\mu +\mu  - )5/2
,

where \mu + := 1 + \lambda 2 + 2\lambda \sigma \geq 0 and \mu  - := 1 + \lambda 2  - 2\lambda \sigma \geq 0. Let

f(\lambda , \sigma ) :=
\tau 4(\mu 2

+ + \mu 2
 - )

(\mu +\mu  - )5/2
.

We next prove that f(\lambda , \sigma ) is a decreasing function with respect to \sigma for any fixed \lambda \leq 
\sqrt{} 

5 - 
\surd 
21

2 .
In fact, through some basic algebraic computation, we have

\partial f(\lambda , \sigma )

\partial \sigma 
= (1 - \sigma 2) \cdot 

\lambda (1 - \sigma 2)(\mu +  - \mu  - )(5\mu 
2
+ + 4\mu +\mu  - + 5\mu 2

 - ) - 4\sigma (\mu 2
+ + \mu 2

 - )\mu +\mu  - 

(\mu +\mu  - )7/2

\leq (1 - \sigma 2)\sigma (\mu 2
+ + \mu 2

 - ) \cdot 
28\lambda 2(1 - \sigma 2) - 4\mu +\mu  - 

(\mu +\mu  - )7/2

= (1 - \sigma 2)\sigma (\mu 2
+ + \mu 2

 - ) \cdot 
28\lambda 2  - 12\lambda 2\sigma 2  - 4(1 + \lambda 2)2

(\mu +\mu  - )7/2

\leq 0,

provided \lambda \leq 
\sqrt{} 

5 - 
\surd 
21

2 . Note that G(0, \sigma ) = 0. It then immediately gives

G(\lambda , \sigma ) \leq 2

\int \lambda 

0
f(t, \sigma )dt \leq 2

\int \lambda 

0
f(t, 0)dt = 4

\int \lambda 

0

t

(1 + t2)3
dt =

\lambda 2(\lambda 2 + 2)

(\lambda 2 + 1)2
,

which completes the claim (7.10).

Lemma 7.4. Assume \lambda \geq 2.95. Let \bfitx ,\bfith be two fixed vectors in \BbbC n with \| \bfitx \| 2 = \| \bfith \| 2 = 1
and \Im (\bfith \ast \bfitx ) = 0. Suppose \xi \in \BbbC n is a complex Gaussian random vector. Then we have

\BbbE 
\biggl( 
\Re 2(\bfith \ast \xi \xi \ast \bfitx )

| \xi \ast \bfitx | 2
\cdot 1\{ \lambda | \xi \ast \bfitx | \geq | \xi \ast \bfith | \} 

\biggr) 
\geq 3

8
 - 1

(\lambda + 1)2
.
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1012 MENG HUANG AND YANG WANG

Proof. Due to the unitary invariance of the Gaussian random vector, without loss of
generality, we assume \bfith = \bfite 1 and \bfitx = \sigma \bfite 1 + \tau ei\phi \bfite 2, where \sigma = \bfith \ast \bfitx \in \BbbR , | \sigma | \leq 1, and
\tau =

\surd 
1 - \sigma 2. Let \xi 1, \xi 2 be the first and second entries of \xi . Denote \xi 1 = \xi 1,\Re + i\xi 1,\Im and

\xi 2 = \xi 2,\Re + i\xi 2,\Im , where \xi 1,\Re , \xi 1,\Im , \xi 2,\Re , \xi 2,\Im are independent Gaussian random variables with
distribution \scrN (0, 1/2). Then the inequality \lambda | \xi \ast \bfitx | \geq | \xi \ast \bfith | is equivalent to

\lambda 

\sqrt{} 
(\sigma \xi 1,\Re + \tau (cos\phi \xi 2,\Re + sin\phi \xi 2,\Im ))

2 + (\sigma \xi 1,\Im  - \tau (sin\phi \xi 2,\Re  - cos\phi \xi 2,\Im ))
2 \geq 

\sqrt{} 
(\xi 21,\Re + \xi 21,\Im ).

To obtain the conclusion, we take the polar coordinates transformations and denote

\xi 1,\Re = r1 cos \theta 1
\xi 1,\Im = r1 sin \theta 1

\sigma \xi 1,\Re + \tau (cos\phi \xi 2,\Re + sin\phi \xi 2,\Im ) = r2 cos \theta 2
\sigma \xi 1,\Im  - \tau (sin\phi \xi 2,\Re  - cos\phi \xi 2,\Im ) = r2 sin \theta 2

\right\}       
with r1, r2 \in (0,+\infty ), \theta 1, \theta 2 \in [0, 2\pi ]. It is easy to check that

\Re (\bfith \ast \xi \xi \ast \bfitx ) = \Re 
\Bigl( 
(\sigma \xi 1 + \tau e - i\phi \xi 2)\=\xi 

\Bigr) 
= \xi 1,\Re (\sigma \xi 1,\Re + \tau (cos\phi \xi 2,\Re + sin\phi \xi 2,\Im )) + \xi 1,\Im (\sigma \xi 1,\Im  - \tau (sin\phi \xi 2,\Re  - cos\phi \xi 2,\Im ))

= r1r2 cos(\theta 1  - \theta 2).

It means the expectation can be written as

F (\lambda , \sigma ) := \BbbE 
\biggl( 
\Re 2(\bfith \ast \xi \xi \ast \bfitx )

| \xi \ast \bfitx | 2
\cdot 1\{ \lambda | \xi \ast \bfitx | \geq | \xi \ast \bfith | \} 

\biggr) 
=

1

\pi 2

\int 2\pi 

0

\int 2\pi 

0

\int +\infty 

0

\int \lambda \cdot r2

0

r31r2
\tau 2

\cdot cos2(\theta 1  - \theta 2) \cdot e - (r21+r22)/\tau 
2 \cdot e2\sigma r1r2 \mathrm{c}\mathrm{o}\mathrm{s}(\theta 1 - \theta 2)/\tau 2dr1dr2d\theta 1d\theta 2

= 2

\infty \sum 
k=0

2k + 1

(k!)2 \cdot (k + 1)
\cdot \sigma 2k

\tau 4k+2

\int +\infty 

0

\int \lambda \cdot r2

0
r2k+3
1 r2k+1

2 \cdot e - (r21+r22)/\tau 
2
dr1dr2,

where the last equation follows from the fact that\int 2\pi 

0

\int 2\pi 

0
cos2k(\theta 1  - \theta 2)d\theta 1d\theta 2 =

\pi 2(2k  - 1)!!

2k - 2 \cdot k!

for any integer k. To evaluate F (\lambda , \sigma ), we first take the derivative and then obtain

\partial F (\lambda , \sigma )

\partial \lambda 
:= 2

\infty \sum 
k=0

2k + 1

(k!)2 \cdot (k + 1)
\cdot \sigma 2k

\tau 4k+2

\int +\infty 

0
\lambda 2k+3r4k+5

2 \cdot e - (1+\lambda 2)r22/\tau 
2
dr2

= 2
\infty \sum 
k=0

(2k + 1)!(2k + 1)

(k!)2
\cdot \sigma 2k(1 - \sigma 2)2 \cdot 

\biggl( 
\lambda 

1 + \lambda 2

\biggr) 2k+3

.
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Since F (0, \sigma ) = 0, it implies that

(7.12) F (\lambda , \sigma ) = 2
\infty \sum 
k=0

(2k + 1)!(2k + 1)

(k!)2
\cdot \sigma 2k(1 - \sigma 2)2 \cdot 

\int \lambda 

0

\biggl( 
t

1 + t2

\biggr) 2k+3

dt.

With this in place, all we need to do is to lower bound the integral
\int \lambda 
0

\bigl( 
t

1+t2

\bigr) 2k+3
dt. Note

that

\int \lambda 

0

\biggl( 
t

1 + t2

\biggr) 2k+3

dt =

\int 1

0

\biggl( 
t

1 + t2

\biggr) 2k+3

dt+

\int \lambda 

1

\biggl( 
t

1 + t2

\biggr) 2k+3

dt := I + II.

For the first term, let t = tan \theta . It then gives

I =

\int \pi 
4

0
sin2k+3 \theta cos2k+1 \theta d\theta 

=
1

22k+2

\int \pi 
4

0
sin2k+1(2\theta )(1 - cos(2\theta )) d\theta 

=
k!

(2k + 1)!! \cdot 2k+3
 - 1

2(k + 1) \cdot 22k+3
.(7.13)

For the second term, noting that \lambda \geq 1, we have

(7.14) II \geq 
\int \lambda 

1
(1 + t) - 2k - 3dt =

1

2(k + 1)
\cdot 
\biggl( 

1

22k+2
 - 1

(\lambda + 1)2k+2

\biggr) 
.

Putting (7.13) and (7.14) into (7.12), we have

F (\lambda , \sigma ) \geq 
\infty \sum 
k=0

(2k + 1)!!(2k + 1)

(k + 1)!
\cdot \sigma 2k(1 - \sigma 2)2 \cdot 

\biggl( 
(k + 1)!

4(2k + 1)!!
+

1

2k+3
 - 2k

(1 + \lambda )2k+2

\biggr) 
.

Let \beta := (1 + \lambda )2. Expand F (\lambda , \sigma ) into a series with respect to \sigma , and we have
(7.15)

F (\lambda , \sigma ) \geq 3

8
 - 1

\beta 
+

9

16
\sigma 2  - 

\infty \sum 
k=1

(2k  - 1)!!(2k + 7)

2k+4(k + 2)!
\sigma 2k+2  - 

\biggl( 
1 - 4

\beta 

\biggr) 2

\cdot 
\infty \sum 
k=1

2k(2k  - 1)!!

(k  - 1)!\beta k
\sigma 2k+2,

where we use the fact that \lambda \geq 2.95 in the above inequality. Next, we need to upper bound
the last two series. From Wallis' inequality [23], we know that

(2k  - 1)!!

2kk!
\leq 1\surd 

2k
.
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Thus,

\infty \sum 
k=1

(2k  - 1)!!(2k + 7)

2k+4(k + 2)!
\sigma 2k+2 \leq \sigma 2

16
\cdot 

\infty \sum 
k=1

2k + 7\surd 
2k(k + 2)(k + 1)

\leq \sigma 2

8
\cdot 

\infty \sum 
k=1

1

k3/2

\leq \sigma 2

8

\biggl( 
1 +

\int \infty 

1

1

t3/2
dt

\biggr) 
=

3

8
\sigma 2,(7.16)

where the second inequality follows from the fact that 2k+7
(k+2)(k+1) \leq 

2
\surd 
2

k for all k \geq 1.
On the other hand, using Wallis' inequality again, we have\biggl( 

1 - 4

\beta 

\biggr) 2

\cdot 
\infty \sum 
k=1

2k(2k  - 1)!!

(k  - 1)!\beta k
\sigma 2k+2 \leq 

\biggl( 
1 - 4

\beta 

\biggr) 2

\cdot \sigma 2 \cdot 
\infty \sum 
k=1

4k \cdot k\surd 
2k\beta k

\leq 
\biggl( 
1 - 4

\beta 

\biggr) 2

\cdot \sigma 2

\surd 
2
\cdot 

\infty \sum 
k=1

k

\biggl( 
4

\beta 

\biggr) k

=
2
\surd 
2

\beta 
\sigma 2,(7.17)

where the last equation follows from the fact that

\infty \sum 
k=1

kxk - 1 =
1

(1 - x)2
for all 0 \leq x < 1.

Putting (7.16) and (7.17) into (7.15), we know that for \lambda \geq 2.95 it holds that

F (\lambda , \sigma ) \geq 3

8
 - 1

\beta 
.

This completes the proof.
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